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Introduction

= Aerobraking consists in using atmospheric air drag in
order to reduce the orbit’s apoapsis altitude

= Allows significant mass savings with direct benefits to
mission design

= Aerobraking has been performed on several US missions
to Venus and Mars, and an European experiment is
planned in 2014 on VEX

= Baselined on recent ESA system studies (MarsNEXT, MSR
Orbiter)

= However, aerobraking remains a challenging phase:
» High cost due to ground operations heavy workload

= Risk of spacecraft component over-heating, or even
mission loss

= The main objective of the study is to define and select
aerobraking strategies aiming at:
» Gradually increasing aerobraking autonomy level
= Guaranteeing aerobraking robustness

= Performed in the frame of ESA study
“Robust Autonomous Aerobraking Strategies”
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Aerobraking mission scenario

= ESA MarsGen is to be used as reference mission
» ESA system study performed in 2009
= Mars network science mission (launch 2020 — 2022)
» Follow-up study to MarsNEXT

= The selection of the aerobraking scenario is the

result of a trade-off between:
= Spacecraft characteristics
= Propellant consumption
» Aerobraking aggressiveness

This document and its content is the property of Astrium [Ltd/SAS/GmbH] and is strictly confidential.
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= Ballistic coefficient of 25 kg/m? 25 0.5 2250 150 | 67500 34 14 100

= |nitial apoapsis altitude at 67500km 0.7 3200 140 | 96000 0 11 101

= Peak dynamic pressure at 0.5 N/m? 03 1300011500 23500 217 31 %

= These conditions allow limiting the 38 03 220001 15043000 % 20 100
duration of aerobraking to 6 months 07 3200 | 150 | 67000 33 1 101
(including margins) 0.3 1280 150 16000 321 39 99

50 0.5 2200 150 28000 177 27 100

0.7 3150 150 41500 102 21 101
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High-fidelity Aerobraking Simulator
(HIFAS)

= Main objective is to implement, validate and evaluate
autonomous aerobraking strategies 0

GCM density (kg/mz) for o= 3496km and MJD = 59253

= Environment modelling is critical in order to properly
capture the effects that drive the aerobraking phase
» Mars atmosphere density variations
=>» high-fidelity Mars atmosphere models including both
short-scale and long-scale perturbations: Mars Climate
Database, General Circulation Model
= Aerobraking orbit evolution
= 20x20 Mars gravity field and Solar gravity
= Temperatures of critical elements
=» S/C thermal model, for both MLI and solar arrays
» Power status (e.g. for safe mode validation)
= S/C battery charge model

Latitude [deg]
I o

= Management of different regimes (drag/vacuum)

» Implementation of a « variable scheduler » in order to
manage different simulation time steps and minimize
computation time

» Enables simulations from one atmospheric pass (~1000s)
up to typically one week for full « end-to-end » validation
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AOCS for aerobraking
AOCS modes and sequences
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AOCS for aerobraking:

AOCS design

Targeted
aerobraking

Attitude control is based on an aerodynamically stable pace

{
|
S/C configuration Real velocity,
» Avoid fighting the aerodynamic torque |
» Wide deadband, thruster-based control as safeguard '

Velocity
vector at
periapsis

Guidance is inertial until final stage of aerobraking,
then time-varying as the orbit becomes circular
» Time-varying guidance generates timing constraints, since the
attitude profile must be close enough to the actual velocity
vector
» Forinstance, a 15 deg maximum attitude error leads to a 180s
periapsis timing error in the end of aerobraking (worst case)

» |n the case of inertial pointing, this timing constraint is relaxed

The proposed AOCS baseline is validated
by simulations
= Attitude is always kept within + 15 deg
around guidance profile
= Consumption remains reasonable
(a few grams per pass) ‘
= Validity of inertial guidance in the 1000
beginning of aerobraking is confirmed [ aots pion]
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Autonomy level 1:
Motivation and design

Because of atmospheric variability and
misknowledge, AOCS sequences generated by
the ground are quickly out-of-sync with actual
orbit events
» May lead to extra-propellant usage or unsafe situations
. :_—Ie_avy operational workload in order to ensure proper
iming
= But orbit timing may be detected autonomously via
onboard accelerometers

Objectives of autonomy level 1:

= Shift upcoming drag sequences in time in order to
match actual orbit events, based on onboard
atmospheric sensing = Periapsis Time Estimator

» Protect the spacecraft against excessive heat loads not
foreseen by ground =» Immediate Action procedure

Principles of the Periapsis Time Estimator:
= Firstly, the time of last periapsis is estimated from drag
barycenter
» Then accumulated drag [¥]V is used to update orbital
period and predict time of next periapsis
» Thus after each drag pass, the timing of the next orbit
is autonomously corrected, without any error growth

All the space you need
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# sequences

Minimum number of sequences per day (6p'p = 35% 10 and th <2255 30)
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Autonomy level 1:
Simulation results and conclusions

x10° x10°

= The Periapsis Time Estimator (PTE)was | | = Cmscom e
validated on a wide range of conditions . ? B o
» Different orbital geometry cases
» Varying atmospheric conditions, including
both long-scale and short-scale
atmospheric perturbations
= Varying sensor noises

density [kg/m3]

= The PTE predicts the time of next
periapsis with the required accuracy
(< 180s) over 3 days and more AN N
= Performances improve over aerobraking as = = & 5 A w0 w0 omoam am
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sensitivity to drag {¥}V estimation error Next periapsis estimation error
decreases = A A A A s —
= Robustness to atmospheric perturbations AL o pmaten esule
has been demonstrated Variance (1-sigma)
" . IR I
=  Additional lessons learned: N SRR TN OO OO0 PO OOOOOS O UV NS S
. . . — : N : L S
= The implementation of a corrective factorto = MR SRR T T Ul S B
account for non-instantaneous drag (¥] g e A ++“’“ e T
required =R A A I TS S B |
= Calibration of accelerometers bias before = T O
each paSS IS necessary (In the beglnnlng Of A0k . ........ ........ ......... ........ \ ........ ..... 4 ........ ........ .........
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\_,,, 5 Lo+
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Autonomy level 2:
Motivation and design

This document and its content is the property of Astrium [Ltd/SAS/GmbH] and is strictly confidential.

. = Main objective: extend S/C autonomy by Start of aerobraking

2 transferring additional activities onboard ,_,.....

] » Relieve the ground from most low-level activities, so (Wim?)

E that it may focus on high-level activities el

5 = Target autonomy horizon of one week for identified > constrain

S activities 65%

§ margin

= Two activities were considered for 2870 pprtn

E . . 2170 (o o e e —— —— —— — —— . m?

; onboard implementation: 70 with Ch = 0.9

3 » Drag sequences generation Lower limit

5 = Corridor control, i.e. ABM analysis, decision-making

g and selection ime

z = The ground still performs regular

2 I I i W) Erom ground

7 orbit determination and oy

high-level activities, such as:

§ = Monitor aerobraking progress sensors NAV ——Updated orbital elements

2 = Update aerobraking corridor

2 = Atmosphere monitoring and trending

‘c; = Modelling updates Sequen o
| = 7 % vV g:ge?atg? ?eguegce

Aerothgrmal | F.— ABM manager | ABM flag |
All the space you need monitor " % [ andov
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Autonomy level 2:

Simulation results and conclusions

= The algorithms of level 2 were
implemented and validated over one

week, with satisfactory results
= Almost no excessive heat flux occurrences
» Achieved dynamic pressure peak is between

0.49 N/m? and 0.76 N/m?, exceeding the target
0.5 N/m2

» Reasonable {¥]V consumption for corridor

control, extrapolated to ~40m/s over 6 months
in worst case

Frequency of the required ground updates to
support onboard navigation has been
preliminary estimated (from > 7 days to ~3
days in the end)

= The simple approach to autonomous
corridor control works

» Minimal onboard navigation, simple heat flux

control approach

» Potentially removes the need for complex

onboard propagator, models, fully autonomous
navigation

It shall not be communicated to any third party without the written consent of Astrium [Ltd/SAS/GmbH].
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heat flux [W/m?)

heat flux [W/m?)

Corridor control and evolution of peak heat flux
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Aerobraking safe mode

= (Classical safe mode for
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interplanetary missions
may lead to arbitrary
attitude in atmospheric
flow =» dynamics,
thermal, orbital decay
Issues

Trade-off between

different solutions led to
the combination of a low-

drag configuration and
pop-up ¥}V

Design validated by
simulations, based on
thermal, power, orbital
decay criteria
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orbital period

‘ Normal Mods ‘ Aerobraking Mode ‘ Norfnal Mode ‘ Aerobraking Mode ‘ Normal Mode ‘
Sle Blew Slew Slew

Sun_l Eanh Margin A/B attitud Margin Margin A/B attitude Margin Sun_l Eanh
pointing pointing

@ RRP | SAP | IPP | SP | PUP | SP | IPP | SP | DP | SP I IPP |

@ RRP | SAP | IPP | SP | PUP | SP | IPP | SP | DP | SP I IPP |

@ RRPI SAP | SP | PUP | SP | IPP | SP | DP | SP I IPP |

@ RRPl SAP |IPP| SP | DP | SP I IPP |

1: safe mode just before atmospheric entry; not enough time to go to aerobraking configuration

2: safe mode during atmospheric pass
3: safe mode right after atmospheric pass

4: safe mode around apoapsis ; not enough time to perform pop-up boost at apoapsis
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Conclusions and future work
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The AOCS design for aerobraking has been validated
The PTE has been validated, enabling autonomy level 1

The feasibility of the simple approach to autonomous corridor
control has been demonstrated

The proposed safe mode design has been validated by
simulations, ensuring S/C safety

The immediate action procedure triggered in case of thermal
alarm was validated, reducing the experienced temperatures at
the next periapsis even in the case of a global dust storm

Next step: validate and evaluate autonomy algorithms-during
VEX aerobraking experiment (2014) -) first demonstration of

their operational capabilities ‘
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